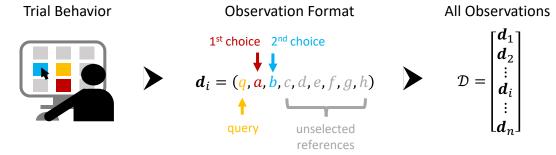
Supplemental Material


Interleaved Training Improves Category Learning by Increasing Perceptual Similarity of Within-Category Exemplars

Sharon M. Noh^{1*}, Brett D. Roads^{2*}, Bradley C. Love², & Alison R. Preston¹

The University of Texas at Austin, ²University College London

Psychological Embedding Procedure

Data Collection

Cognitive Model

The model's free parameters can be divided into two groups for conceptual clarity.

 $\mathbf{Z} \in \mathbb{R}^{m \times d}$ Free parameters that specify the coordinates of the m stimuli in the d-dimensional embedding space.

 $\boldsymbol{\theta} = (\rho, \tau, \beta, \gamma, \boldsymbol{w})$ Free parameters that govern the computation of distance and similarity.

Probability of Probability of Probability of 2nd choice
$$p(\boldsymbol{d}_i|\boldsymbol{Z},\boldsymbol{\theta}) = P(a|\boldsymbol{Z},\boldsymbol{\theta})P(b|a,\boldsymbol{Z},\boldsymbol{\theta}) = \frac{s(\boldsymbol{z}_q,\boldsymbol{z}_a)}{\sum_r s(\boldsymbol{z}_q,\boldsymbol{z}_r)} \frac{s(\boldsymbol{z}_q,\boldsymbol{z}_b)}{\sum_{r \to a} s(\boldsymbol{z}_q,\boldsymbol{z}_r)}$$
Probability of All Observations
$$p(\mathcal{D}|\boldsymbol{Z},\boldsymbol{\theta}) = \prod_i p(\boldsymbol{d}_i|\boldsymbol{Z},\boldsymbol{\theta})$$
Similarity Kernel
$$s(\boldsymbol{x},\boldsymbol{y}) = \exp(-\beta\|\boldsymbol{x}-\boldsymbol{y}\|_{\rho,\boldsymbol{w}}^{\tau}) + \gamma$$
Inference Objective
$$\max_{\boldsymbol{Z},\boldsymbol{\theta}} \sum_i k_i \log p(\boldsymbol{d}_i|\boldsymbol{Z},\boldsymbol{\theta})$$
Where k_i denotes the importance of the observation.

Predicted Ease

The psychological embedding can be used to predict the difficulty of each item.

Tuple representing the embedding point and corresponding class label of the
$$i$$
th stimulus.

The set of indices representing all the stimuli in the domain of interest.

$$S_i = \{j \in \mathcal{I} | y_j = y_i \land j \neq i\}$$
 The set of indices that have the same class as the *i*th stimulus.

$$ease_i = \frac{\sum_{j \in \mathcal{S}_i} s(\mathbf{z}_i, \mathbf{z}_j)}{\sum_{k \in \mathcal{I}_{\neg i}} s(\mathbf{z}_i, \mathbf{z}_k)}$$
 The probability that the *i*th item will be categorized correctly assuming an agent has knowledge of all stimuli except the *i*th stimulus.